Til hovedinnhold
Norli Bokhandel

Bayesian Nonparametrics for Causal Inference and Missing Data

2023, Innbundet, Engelsk

1 219,-

På fjernlager - sendes normalt innen 7 til 14 virkedager
  • Gratis frakt på ordre fra 299,-
  • Bytt i 200 butikker
  • Ikke tilgjengelig for hent i butikk

Bayesian Nonparametric Methods for Missing Data and Causal Inference provides an overview of flexible Bayesian nonparametric (BNP) methods for modeling joint or conditional distributions and functional relationships, and their interplay with causal inference and missing data. This book emphasizes the importance of making untestable assumptions to identify estimands of interest, such as missing at random assumption for missing data and unconfoundedness for causal inference in observational studies. The BNP approach can account for possible violations of assumptions and minimize concerns about model misspecification, unlike parametric methods. The overall strategy is to first specify BNP models for observed data and second to specify additional uncheckable assumptions to identify estimands of interest.

The book is divided into three parts. Part I develops the key concepts in causal inference and missing data, and reviews relevant concepts in Bayesi

Produktegenskaper

  • Forfatter

  • Bidragsyter

    Daniels, Michael J.; Linero, Antonio; Roy, Jason
  • Forlag/Utgiver

    SD Books
  • Format

    Innbundet
  • Språk

    Engelsk
  • Utgivelsesår

    2023
  • Antall sider

    252
  • Serienavn

    Chapman & Hall/CRC Monographs on Statistics and Ap
  • Varenummer

    9780367341008

Kundeanmeldelser

Frakt og levering