This comprehensive guide addresses key challenges at the intersection of data science, graph learning, and privacy preservation. It begins with foundational graph theory, covering essential definitions, concepts, and various types of graphs. The book bridges the gap between theory and application, equipping readers with the skills to translate theoretical knowledge into actionable solutions for complex problems. It includes practical insights into brain network analysis and the dynamics of COVID-19 spread. The guide provides a solid understanding of graphs by exploring different graph representations and the latest advancements in graph learning techniques. It focuses on diverse graph signals and offers a detailed review of state-of-the-art methodologies for analyzing these signals. A major emphasis is placed on privacy preservation, with comprehensive discussions on safeguarding sensitive information within graph structures. The book also looks forward, offering insights into emerg