Til hovedinnhold
Norli Bokhandel

Machine Learning for Asset Managers

2020, Pocket, Engelsk

249,-

På fjernlager - sendes normalt innen 7 til 14 virkedager
  • Gratis frakt på ordre fra 299,-
  • Bytt i 200 butikker
  • Ikke tilgjengelig for hent i butikk
Successful investment strategies are specific implementations of general theories. An investment strategy that lacks a theoretical justification is likely to be false. Hence, an asset manager should concentrate her efforts on developing a theory rather than on backtesting potential trading rules. The purpose of this Element is to introduce machine learning (ML) tools that can help asset managers discover economic and financial theories. ML is not a black box, and it does not necessarily overfit. ML tools complement rather than replace the classical statistical methods. Some of ML''s strengths include (1) a focus on out-of-sample predictability over variance adjudication; (2) the use of computational methods to avoid relying on (potentially unrealistic) assumptions; (3) the ability to -learn- complex specifications, including nonlinear, hierarchical, and noncontinuous interaction effects in a high-dimensional space; and (4) the ability to disentangle the variable search from the specifi

Produktegenskaper

  • Forfatter

  • Bidragsyter

    Lopez de Prado, Marcos M. (Cornell University, New York)
  • Forlag/Utgiver

    SD Books
  • Format

    Pocket
  • Språk

    Engelsk
  • Utgivelsesår

    2020
  • Antall sider

    152
  • Serienavn

    Elements in Quantitative Finance
  • Varenummer

    9781108792899

Kundeanmeldelser

Frakt og levering